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Abstract
Since the manipulation of particles using atomic force microscopy is not observable in real-time, modeling the manipulation
process is of notable importance, enabling us to investigate the dynamical behavior of nanoparticles. To model this process,
previous studies employed classical continuum mechanics and molecular dynamics simulations which had certain limitations; the
former does not consider size effects at the nanoscale while the latter is time consuming and faces computational restrictions. To
optimize accuracy and computational costs, a new nonclassical modeling of the nanomanipulation process based on the modified
couple stress theory is proposed that includes the size effects. To this end, after simulating the critical times and forces that are re-
quired for the onset of nanoparticle motion on the substrate, along with the dominant motion mode, the nonclassical theory of con-
tinuum mechanics and a developed von Mises yield criterion are employed to investigate the dynamical behavior of a cylindrical
gold nanoparticle during manipulation. Timoshenko and Euler–Bernoulli beam theories based on the modified couple stress theory
are used to model the dynamics of cylindrical gold nanoparticles while the finite element method is utilized to solve the governing
equations of motion. The results show a difference of 90% between the classical and nonclassical models in predicting the
maximum deflection before the beginning of the dominant mode and a difference of more than 25% in the dynamic modeling of a
200 nm manipulation of a gold nanoparticle with a length of 25 µm and aspect ratio of 30. This difference increases with each
increment of the aspect ratio and reduction of manipulation distance. Furthermore, by applying an extended von Mises criterion on
the modified couple stress theory, it is found that the failure aspect ratio of a cylindrical gold nanoparticle based on nonclassical
models is 212% more than that of the classical model. In the end, the results are compared with those of the classical method on
polystyrene nanorods. The results for cylindrical gold nanoparticles indicate that the material length scale has a major effect on the
exact positioning of cylindrical nanoparticles.
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Introduction
It is not possible to simultaneously observe and manipulate a
nanoparticle using atomic force microscopy (AFM) as the
imaging and manipulation tools are combined. As a result,
dynamic modeling and simulation are essential in this field of
research. For the first time, Sitti and Hashimoto proposed a
two-dimensional (2D) model for manipulation of spherical
nanoparticles [1] based on which Tafazzoli and Sitti presented a
model for describing the dynamic modes of nanoparticles
during the manipulation process and obtained the associated
critical forces and times [2]. Shen et al. studied the dynamical
behavior of dagger cantilevers using the power series and em-
ployed the finite element method (FEM) to validate the
outcomes. The classical Euler–Bernoulli beam theory was used
for deriving the equations of motion. They also studied the
sensitivity of cantilever frequencies to contact stiffness and in-
vestigated the variation of sensitivity with cantilever slope
[3,4]. Shi and Zhao examined the contact models at
the nanoscale and compared Derjaguin–Muller–Toporov
(DMT), Johnson–Kendall–Roberts–Sperling (JKRS) and
Maugis–Dugdale (MD) models with the Hertz model. They
studied the effect of dimensionless load and the transition pa-
rameter on the contact area. They emphasized the importance of
the MD model that covers a large area of AFM surveys [5].

Owing to the importance of the AFM cantilever spring constant
and its use in calculation of the rupture force of protein bonds
and Young’s modulus of nanoparticles, Clifford and Seah deter-
mined the AFM cantilever normal spring constant [6]. Korayem
and Zakeri studied the effects of different parameters on the
times and forces in a 2D manipulation. Using their proposed
algorithm, the location of the nanoparticle up to the final posi-
tion could be simulated [7]. Moradi et al. modeled the manipu-
lation of cylindrical nanoparticles by means of AFM and a clas-
sical continuum mechanics approach. It was determined that
there exists a difference between the dynamic mode of nano-
and microbars. They found that the dominant dynamic mode for
microrods and nanorods are rolling and sliding, respectively [8].

In a further development in modeling the manipulation process,
Babahosseini et al. presented a 2D model by considering the
influential parameters in nanoscale modeling. They employed
the modified Coulomb and Lund–Grenoble (LuGre) theories for
frictional models [9]. Hou et al. studied the behavior of cylin-
drical nanoparticle motion during the manipulation process.
They considered the viscous friction and studied two states:
turning the axis inside or outside of the nanoparticle [10].

Kahrobaiyan et al. investigated the resonance frequencies and
sensitivity of the AFM cantilever using the modified couple
stress theory (MCST). An analytical formulation was derived

for natural frequencies by writing the differential equations of
cantilever motion. They found that when the dimensionless
thickness of beam is less than 10, the results of classical and
nonclassical models are significantly different [11]. In another
study, the nonlinear behavior of the cantilever came to atten-
tion [12].

In another use of MCST in manipulation process by means of
AFM, Lee and Chang focused on the sensitivity of V-shaped
cantilevers. The results showed that for a lower contact stiff-
ness, the sensitivity of V-shaped cantilevers based on MCST is
less than that based on classical theory. They concluded that
stiffer cantilevers are suitable for scanning stiffer plates while
softer cantilevers, which have a higher sensitivity, could be
used for biological nanoparticles [13]. Using MSCT for
modeling AFM with a piezoelectric system was considered in
another study [14]. Polyakov et al. examined the dependence of
static friction and contact area on nanoparticle geometry in the
manipulation of spherical silver and polyhedral gold nanoparti-
cles. Their employed models for the contact area of spherical
nanoparticles were the frozen droplet model and DMT-M (the
DMT model with Maugis’ approximation) [15]. Due to the
vulnerability of the biological nanoparticles to the applied force,
modeling the required manipulation forces is of considerable
importance. Korayem and Saraee studied the effective forces in
three-dimensional (3D) manipulation of biological nanoparti-
cles for the first time. The simulation results were compared
with those obtained from modeling the gold nanoparticle
manipulation. In addition, the 3D stiffness matrix for a rectan-
gular cantilever was presented for the first time [16].

Kawai et al. turned the spotlight on the superlubricity of
graphene nanoparticles sliding on a gold substrate considering
both computational and experimental approaches [17]. Liu et al.
introduced a new strategy for manipulating nanoparticles. Me-
chanical modeling and finite element simulation were em-
ployed to analyze the behavior of samples and optimize the
manipulation method. The model used for mechanical modeling
was the classical Euler–Bernoulli beam model [18]. AFM canti-
lever dimensions are at micrometer scale and designers are con-
stantly trying to make them smaller to achieve higher sensi-
tivity and resolution. Jazi et al. tried to develop a more accurate
model of the AFM cantilever using MCST by considering its
size-dependent nature. They considered Euler–Bernoulli beam
assumptions to model the dynamical behavior of cantilever.
Studying the amplitude of the free vibrations of the cantilever
showed the importance of including size effects in modeling.
Also, stability analysis and frequency response of the micro-
scope in the classical and nonclassical models were investigat-
ed. The results showed that considering size effects has a
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remarkable impact on a reliable estimation of the dynamical be-
havior of AFM [19].

Sharifi et al. simulated the interaction force between the AFM
probe and surface. They used the force calculation capability of
AFM and artificial neural network for simulation. The results
showed that their proposed neural network was able to model
the behavior of a probe in the noncontact model [20]. Yuan et
al. focused on the problem of tip location uncertainty caused by
the nonlinearity of piezoelectric and temperature changes. They
proposed a method in which local scanning was used for
observing the distance. The experimental results were consis-
tent with their proposed algorithm [21]. Wu et al. studied the
automated manipulation of flexible nanowires using AFM. Al-
though the automated manipulation of solid nanoparticles was
already investigated, it was not generalizable to flexible nano-
wires due to the complexity of flexible behavior. Also, for
manipulating multiple nanowires, they presented a method
based on graph theory that saved significant time owing to
being independent from intermediate scanning [22].

Mahdjour Firouzi et al. tried to simulate the manipulation of bi-
ological nanoparticles using molecular dynamics. They used the
single-walled carbon nanotubes as a probe and performed a
series of simulations for studying the effects of various condi-
tions on the success of the nanomanipulation process. They also
studied two different strategies for protein manipulation [23]. In
another study, using molecular dynamics simulation and a
multiscale approach, Korayem et al. investigated geometrical
effects on the manipulation of carbon allotropes [24].

Ghattan Kashani et al. presented a new method to overcome the
adhesion force between the tip and nanoparticle while releasing
the nanoparticle. They created the required repulsive force for
releasing nanoparticles via high electrostatic voltage. The
method was proposed for a conductive tip and nanoparticles,
and the efficiency of the proposed method was studied using a
combination of molecular dynamics simulation and FEM [25].
To examine the size dependence in the manipulation process by
considering two fields on the nanometer and micrometer scale
related to the nanoparticle and cantilever, respectively,
Korayem et al. modeled the manipulation in vacuum, liquid and
humid environments. Their proposed model contained a
nonclassical model of MCST for the cantilever and tip and a
molecular dynamics model for the nanoparticle. The results
showed that the predicted changes in the nonclassical model are
less than in the classical model [26].

The experimental studies indicate that size-dependent behavior
plays a major role in nano/microstructures where the classical
continuum mechanics are unable to predict this behavior. In the

molecular dynamics method, in spite of accuracy, the dimen-
sional problem arises, and due to hardware limitations, parti-
cles with more than a few hundred nanometers cannot be
modeled. In this article, unlike in previous studies in which the
modeling of nanoparticle dynamics has been performed by
means of either classical theory of continuum mechanics or mo-
lecular dynamics simulation, the nonclassical theory of continu-
um mechanics is employed to study the dynamical behavior of
cylindrical nanoparticles. In addition, a developed version of
the von Mises criterion based on MCST is employed to eval-
uate the size-dependent yielding moments of the nanoparticle.
The results are compared with those of classical models.

To this aim, the dynamic modeling of cylindrical nanoparticles
studied in this paper is composed of four main steps. First, criti-
cal forces and times and the dominant motion mode of the
cylindrical nanoparticle are modeled using kinematic and
dynamic equations governing the probe and substrate of AFM.
In this study, a 2D manipulation process is studied by consid-
ering the sliding and rolling modes of the nanoparticle. The crit-
ical time and force of the dominant motion mode are used as the
inputs of next steps. After applying the exerted force on the
nanoparticle by AFM and distributed resistant force resulting
from friction and adhesion, deflections of the cylindrical nano-
particle before the onset of motion in the dominant mode are
calculated using MCST. For this purpose, classical and nonclas-
sical Euler–Bernoulli and Timoshenko beam theories are
utilized. In the next step, in order to ensure that the cylindrical
nanoparticle does not enter the failure zone, the existing stresses
are studied using two classical and nonclassical yield criterion.
The models employed in this analysis are the classical and
nonclassical von Mises criterion. In the end, after calculating
the nonclassical deflections of the cylindrical nanoparticle and
ensuring that the sample will not fail under existing loading
conditions, the motion of the cylindrical nanoparticle in the
dominant mode is simulated and compared with the existing
results of the classical model.

Modeling and Theory
Modeling critical forces and times and the
dominant motion mode
The modeling of critical forces and times as well as the domi-
nant motion mode of a cylindrical nanoparticle is done using
kinematic and dynamic equations governing the problem and
employing contact models appropriate for use at the nanometer
scale. The employed approach has been used and verified in
many studies [2,7,16]. The AFM used in this study is composed
of a rectangular cantilever and a tip with a spherical contact
point and the particle is manipulated on a silicon substrate. The
Lundberg cylindrical contact model is chosen for the particle
and substrate contact area, and the JKRS model is employed for
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Figure 2: Nanoparticle manipulation forces and angles in a) 3D view and b) side view.

particle–tip contact. Also, a modified Coulomb friction model is
employed to represent the adhesion contact in particle and sub-
strate contact area.

After the initial contact between the tip and nanoparticle is
made, the AFM cantilever begins to deform, and by substrate
motion, the particle moves with the substrate (in stick mode).
This results in the increase of applied force from the tip in addi-
tion to bending and twisting deformation of the cantilever. As
the applied force increases, cantilever deflection, particle–tip
and particle–substrate indentations increase until the applied
force exceeds the resistant force resulting from friction and
adhesion and the particle moves relative to the substrate up to
the target point. The schematic of the manipulation process of
the cylindrical nanoparticle is shown in Figure 1.

Figure 1: Schematic of the manipulation process of a cylindrical nano-
particle by means of AFM.

The required conditions to initiate the sliding and rolling modes
of a cylindrical nanoparticle on the substrate in the lateral direc-
tion in a 3D approach are, respectively, expressed by [16]

(1)

(2)

where

FT is the pushing force, τss, τrs and τrt are the shear strength of
contact in sliding on the substrate and rolling on the substrate
and particle, respectively, μ represents the friction constants, As
and At are the substrate–particle and particle–tip contact area,
respectively, and Rp is the particle radius. The existing geomet-
rical angles and exerted forces are shown in Figure 2. Since the
established model in this paper is 2D involving the application
of tip force to the middle of a cylindrical nanoparticle, critical
forces and times and the dominant mode are obtained based on
a 2D model.

Governing equations using nonclassical
theory
The considered models in this study are the Euler–Bernoulli and
Timoshenko beam models based on MCST. The Strain energy
according to MCST can be expressed as

(3)

where σij, εij, are classical terms of stress and strain tensors, and
mij and χij are the symmetric part of couple stress and curvature
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tensors, respectively. Also, the relation for couple stress and
curvature tensors is written as [27]

(4)

where l is the material length scale parameter for considering
the size effects, and G is the shear modulus.

The displacement fields for the Timoshenko beam of Figure 3
are described as

(5)

where u1, u2 and u3 are displacements along the axes x, y and z,
respectively, ψ(x,t) is the angular rotation of the beam cross
section and w(x,t) is the beam lateral deformation.

Figure 3: Timoshenko beam model: kinematic parameters, loading
and coordinate system [27].

By replacing the equations of non-zero elements, one can obtain
the strain, stress, curvature and couple stress matrices along
with the non-zero elements of the rotation vector. Additionally,
the strain and kinetic energy and the work of external force
applied on the beam element are, respectively, defined as [27].

(6)

(7)

(8)

where E is the Young’s modulus, L, A and I are length, cross-
sectional area and moment of inertia of the beam, respectively.
ρ is the beam density and F(x,t) and M(x,t) designate the
external force distribution and bending moment per unit length,
respectively. By employing Hamilton’s principle, the equations
of motion are obtained as [27]

(9)

(10)

Using a trend similar to the presented approach for obtaining
the equations of the Timoshenko beam, the equation of the
Euler–Bernoulli beam based on the nonclassical MCST in static
form is found to be [28]

(11)

In order to derive mass and stiffness matrices for the beam ele-
ment that consists of two nodes with two degrees of freedom,
the nodal displacement vector d, displacement w(x,t), rotation
ψ(x,t) and shape function matrices Nw and Nψ must be deter-
mined. The procedure leads to the following stiffness and mass
matrices and nodal force vector for the finite element solution
[27]:

(12)

(13)
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(14)

The governing equations can be expressed as

(15)

In addition, it is known that the behavior of the fracture mecha-
nism at the nanometer and micrometer scale are quite different
than at the macroscale [29]. Kahrobaiyan et al. [30] showed that
an extension of von Mises criterion for a nonclassical
Euler–Bernoulli beam based on MCST could be derived as

(16)

where σY is the yield stress and σ1 can be obtained from

(17)

By considering the left-hand side of Equation 16 as the equiva-
lent stress in the nonclassical model, the classical and nonclas-
sical models could be compared by considering one yield stress
as in

(18)

(19)

The general procedure for the dynamic modeling of the nano-
particle presented here is given by the algorithm of Figure 4.

Results and Discussion
In this paper, the manipulation of a cylindrical gold nanoparti-
cle by means of AFM with the properties listed in Table 1 on a
silicone substrate with an energy level of ω = 0.2 j/m2 and tribo-
logical parameters according to Table 2 are studied.

In Table 1 L, w, t and H represent length, width, thickness of
cantilever and probe height respectively and in Table 2 µs, µd,
µr, τ and τr are the static, dynamic and rolling friction coeffi-
cients.

By considering Equation 1 and Equation 2 in the form FT > Fs,
the critical forces and times at which the tip pushing force over-
comes the resistance force are illustrated in Figure 5 for a cylin-
drical gold nanoparticle with a length of 25 µm and aspect ratio
of 30 in rolling and sliding modes.

As observed, under the given conditions, the sliding mode is the
dominant motion mode of a nanoparticle on the substrate, i.e.,
the sliding mode would start sooner with a lower amount of
force than the rolling mode. By reducing the aspect ratio, the
sliding mode transfers to rolling mode. For the case presented in
this paper, aspect ratios of less than 15 for the gold nanoparti-
cle could be considered in the rolling region and since the speed
of the substrate is constant, the change in motion mode does not
occur during the manipulation process. In the next sections, the
critical time and force of the dominant mode are simulated and
used according to the reviewed geometry. After achieving criti-
cal time and force, since the applied force along the direction of
nanoparticle motion is required to study the motion dynamics,
the tip force angle should be obtained. Figure 6 shows the varia-
tion of angle α (Figure 2b) during the manipulation process
until achieving the critical time for the sliding mode. As can be
seen, α starts from an angle of 0°, then increases until reaching
the critical point at 32.84°. As stated regarding the use of criti-
cal force and time for different geometries, the new critical
angle should be achieved. Modeling based on the nonclassical
theory of MCST requires a material length scale parameter.
This constant for the gold particle according to Fathalilou et al.
[31] is considered to be l = 1.12 µm.

The design parameters in modeling a gold nanoparticle are
presented in Table 3.

Since the cylindrical gold nanoparticle is flexible, the exerted
forces lead to the deflection of nanoparticle prior to the onset of
motion. Figure 7 shows the cylindrical gold nanoparticle defor-
mation (length = 25 µm and aspect ratio = 30) based on the four
models of classical Euler–Bernoulli, classical Timoshenko,
nonclassical Euler–Bernoulli and nonclassical Timoshenko. By
adding the material length scale parameter to classical equa-
tions, the deflections in nonclassical models are decreased. The
calculated values of 42.27 and 42.13 nm in the classical Timo-
shenko and Euler–Bernoulli models are reduced to 3.95 and
3.82 nm in the corresponding nonclassical models.

According to Figure 7, a difference of more than 90% between
the classical and nonclassical models demonstrates the impor-
tance of classical models in the analysis of nano/micrometer
scale effects. Due to the large aspect ratio, the results of the
nonclassical Timoshenko and Euler–Bernoulli models ap-
proach each other similar to classical models. It is noticeable
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Figure 4: General algorithm for dynamic and mechanical modeling.

Table 1: AFM properties of the cylindrical gold nanoparticle modeled in
this study [7].

L
(µm)

w
(µm)

t
(µm)

H
(µm)

Rt
(nm)

E
(GPa)

ν ρ
(kg/m3)

225 48 1 12 20 2330 0.27 169

Table 2: Tribological parameters between particle/tip and needle/sub-
strate [6].

µs µd µr (nm) τ (MPa) τr (Pa·m)

0.8 0.7 80 28 28



Beilstein J. Nanotechnol. 2020, 11, 147–166.

154

Figure 5: Simulation of critical times and forces in sliding and rolling modes for a gold nanoparticle with a length of 25 μm and aspect ratio of 30.

Figure 6: Simulations of the variation of the tip force angle (α) during
the manipulation process until achieving the critical time for the sliding
mode.

Table 3: Gold nanoparticle design parameters.

Parameter Parameter value

E (GPa) 79
υ 0.44
ρ (kg/m3) 19300

that the results of nonclassical beams resemble the rigid body
behavior but it should be taken into the account that this behav-
ior is not the case with all material and dimensional characteris-
tics. It will be later observed in the section “Comparison of the
results with other studies” that for a polystyrene nanorod that is
softer than gold the same conclusion can not be reached.
Table 4 shows the maximum deflections for the analyzed sam-
ple.

The rotation angle of the modeled cylindrical gold nanoparticle
along the nanoparticle length for the four beam models is
presented in Figure 8.

The first seven natural frequencies of the studied sample are
presented in Figure 9. In addition, Table 5 presents the dimen-
sionless natural frequencies according to Figure 9. As observed,
the natural frequencies in the classical and nonclassical
Timoshenko models are less than in the corresponding
Euler–Bernoulli models. The zero value of the first two
frequencies of all models is a sign of rigid-body motion as two
degrees of freedom are assigned to each node.

Regardless of the first two rigid modes (zero frequencies), the
values of natural frequencies in comparison with the tip force
duration until the critical time is reached indicates that the static
mode is dominant.

Sensitivity of deflections to the change in
aspect ratio
To study the effect of aspect ratio on deflection, by keeping the
length fixed and changing the particle radius, the results are
presented in Figure 10 for three aspect ratios of 25, 30 and 35
based on the classical and nonclassical Timoshenko beam
models.

The deflections in both classical and nonclassical models de-
crease with decreasing aspect ratio. For the aspect ratios of 35,
30 and 25, the maximum deflections of 75.2, 42.27 and
21.51 nm in the classical Timoshenko model reach 5.29, 3.95
and 2.87 nm in the nonclassical model, respectively. In addi-
tion, with decreasing aspect ratio, the difference between the
classical and nonclassical models is reduced and classical and
nonclassical models approach each other. It can be seen that the
difference between classical and nonclassical models has de-
creased from 92.96% for the aspect ratio of 35 to 90.65% and
86.63% for the aspect ratios of 30 and 25, respectively. Thus, it
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Figure 7: Classical and nonclassical modeling of the deflections of a cylindrical gold nanoparticle (length = 25 µm and aspect ratio = 30) based on the
four models of classical Euler–Bernoulli, classical Timoshenko, nonclassical Euler–Bernoulli and nonclassical Timoshenko.

Table 4: Comparison of the maximum deflection of a cylindrical gold nanoparticle with the length of 25 µm and aspect ratio of 30.

Beam model Maximum deflection (nm) Difference from classical Timoshenko

classical Timoshenko 42.27 0%
classical Euler–Bernoulli 42.13 0.33%
nonclassical Timoshenko 3.95 90.65%
nonclassical Euler–Bernoulli 3.82 90.96

Figure 8: Classical and nonclassical modeling of the rotation angles of a cylindrical gold nanoparticle (length = 25 µm and aspect ratio = 30) based on
the four models of classical Euler–Bernoulli, classical Timoshenko, nonclassical Euler–Bernoulli and nonclassical Timoshenko.
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Figure 9: Natural frequencies of the classical and nonclassical models of a cylindrical gold nanoparticle with length of 25 μm and aspect ratio of 30.

Figure 10: Sensitivity of classical and nonclassical Timoshenko beam model deflections to the change in aspect ratio.

Table 5: Dimensionless natural frequencies of the cylindrical gold
nanoparticle with length of 25 μm and aspect ratio of 30.

Mode Euler–Bernoulli Timoshenko
Nonclassical Classical Nonclassical Classical

3 74.32 22.37 73.21 22.31
4 204.90 61.67 194.60 61.16
5 401.60 120.90 362.20 118.98
6 663.90 199.36 562.30 194.71
7 991.80 298.56 783.60 287.34

is concluded that with a reduction in aspect ratio, the classical
and nonclassical models tend to yield similar results and the
impact of size effects decrease.

Dynamic simulation using nonclassical
models
Once the cylindrical nanoparticle reaches the critical time and
force in the dominant mode (sliding), the maximum possible
deflection before the onset of motion is obtained and the nano-
particle starts to slide on the substrate. But since the dynamic
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Figure 11: Simulation of motion of a cylindrical gold nanoparticle during a manipulation of 200 nm. A) Aspect ratio of 35. B) Aspect ratio of 30.
C) Aspect ratio of 25.

and static friction coefficient are different, the modified deflec-
tion of beam due to the dynamic coefficient must be employed
to explain the nanoparticle behavior in motion mode. Due to
this transition, the resistance force (and thus tip force) and the
deflection of the particle reduce so that for the aspect ratio of 30
the tip force reduces by 6.58% (from 1.1903 × 10−6 N to
1.1120 × 10−6 N). With respect to deflections the maximum

deflections of 42.27, 42.13, 3.92 and 3.82 nm for classical and
nonclassical beam theories (Table 4) reduce to 39.49, 39.49,
3.69 and 3.56 nm, respectively. Now, with the purpose of
studying the difference between classical and nonclassical
models regarding the dynamic modeling of manipulation, the
cylindrical gold nanoparticle in sliding mode is manipulated by
a value of 200 nm at the substrate speed of 50 nm/s. Figure 11
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Table 8: The sensitivity of dynamic of manipulation to size effects (length = 25 µm and aspect ratio = 30).

Material length scale parameter 1.5l 1.25l l 0.75l 0.5l l = 0

maximum deflection (nm) 1.92 2.66 3.95 6.48 12.14 42.27

and Table 6 show the final position of the cylindrical nanoparti-
cle with a length of 25 µm and aspect ratios of 35, 30 and 25 ac-
cording to the classical and nonclassical Timoshenko beam
models.

Table 6: Final position of the cylindrical gold nanoparticle in a 200 nm
manipulation (length = 25 µm and aspect ratio = 35, 30 and 25) ac-
cording to the classical and nonclassical Timoshenko beam models).

Aspect ratio 25 30 35

final position in classical model 220.15 239.49 269.81
final position in nonclassical
model

202.61 203.69 204.92

difference 7.97% 14.95% 24.05%

According to the results, by increasing the aspect ratio of the
cylindrical nanoparticle, the difference between the classical
and nonclassical models in predicting the final setting of nano-
particle increases. For the cylindrical gold nanoparticle with an
aspect ratio of 35, an error of more than 24% (equivalent to
64.89 nm) is observed. By decreasing the aspect ratio, although
the deflections of the two models decrease, the dominant mode
turns from sliding to rolling. By considering the simulated criti-
cal times in Table 7, the required times for approaching the
final point in classical models are obtained as 4.7030, 4.6620
and 4.6310 seconds for the aspect ratios of 25, 30 and 35, re-
spectively. In contrast, the corresponding values for nonclas-
sical models are 5.075, 5.4284 and 6.029 seconds, respectively.

Table 7: Critical forces and times of a cylindrical gold nanoparticle in
sliding mode with respect to change in aspect ratio.

Aspect ratio 25 30 35

critical force (µN) 1.2520 1.1903 1.1440
critical time (s) 0.7030 0.6620 0.6310

By increasing the manipulation distance, the effects of applying
the classical models are reduced. The final position after a
400 nm manipulation of the gold particle with aspect ratio of 35
is predicted to be 496.81 nm, whereas the classical model
predicts a 404.92 nm manipulation. Therefore, it could be con-
cluded that since the difference of 24.05% in the 200 nm
manipulation is reduced to 18.49% from that of a 400 nm
manipulation, by decreasing the manipulation distance, the clas-

sical model can be better employed. To gain a better under-
standing, it can be claimed that by decreasing the aspect ratio
and increasing the manipulation distance, the results of clas-
sical and nonclassical models approach each other, and using
classical models generates fewer errors. On the contrary, by in-
creasing the aspect ratio and reducing the manipulation dis-
tance, the error associated with classical models rises.

The sensitivity of manipulation dynamics to
size-dependent effects
Obtaining the material length scale parameter is realized via ex-
perimental methods, and its precise calculation has a great
impact on the accuracy of related nonclassical models. In this
section, by considering a value of 1.12 µm, the effects of the
change in the material length scale parameter on the manipula-
tion dynamics are investigated. For this reason, with the
assumption of l changing from 0.5l to 1.5l, the maximum
deflections in the classical (l = 0) and nonclassical Timoshenko
models are shown in Table 8 and Figure 12.

The data of Table 8 indicate the importance of the exact deter-
mination of the material length scale parameter. It is observed
that by increasing the parameter l from 0.5l to 1.5l, the pre-
dicted maximum deflection is decreased by 84%. Figure 13
shows the difference between the manipulation of the nonclas-
sical Timoshenko model for the size coefficients of 0.5l and
1.5l.

In order to ensure that the sample will not fail, the stresses
based on the classical Euler–Bernoulli beam and equivalent
stresses in nonclassical counterpart are illustrated using FEM in
Figure 14 and Figure 15, respectively. The maximum stress of
35.05 MPa in the classical model and maximum equivalent
stress of 8.15 MPa in comparison with the yield stress of
200 MPa for gold [32] provide the required assurance.

Figure 16 shows the changes in classical stress and nonclas-
sical equivalent stress of the Euler–Bernoulli beam with respect
to the aspect ratio. It should be mentioned that for each aspect
ratio, the exerted force should be calculated separately.

Comparing the aspect ratio of 56 in classical theory with 175 in
nonclassical theory reveals the importance of considering
nonclassical models in predicting sample failure. Figure 17
shows the variation of nonclassical equivalent stress with the
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Figure 12: The sensitivity of manipulation dynamics to size effects (length = 25 µm and aspect ratio = 30).

Figure 13: Manipulation of the nonclassical Timoshenko model for 0.5l and 1.5l.

Figure 14: Classical stresses in a cylindrical gold nanoparticle with a length of 25 µm and aspect ratio of 30.
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Figure 15: Equivalent stresses (nonclassical) in a cylindrical gold nanoparticle with a length of 25 µm and aspect ratio of 30.

Figure 16: Comparison of the classical stresses and nonclassical equivalent stresses with respect to changes in aspect ratio.

Figure 17: Variation of nonclassical equivalent stresses with material length scale parameter and change in aspect ratio.
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Table 9: Variation of the failure aspect ratio with the material length scale parameter.

Material length scale parameter l 0.75l 0.5l 0.25l 0.125l l = 0

failure aspect ratio 175 155 122 85 64 56

Figure 18: Comparison of the critical force and time simulation using the JKR contact model for a gold particle. A) Present study simulation method.
B) Tafazzoli and Sitti simulation [2].

material length scale parameter. It is seen that by reducing the
material length scale parameter, the nonclassical model ap-
proaches the classical model. Table 9 shows the aspect ratio of
failure with respect to the material length scale parameter.

As observed in the section “Dynamic simulation using nonclas-
sical model” where the critical forces and times are obtained, a
dynamic simulation is performed using a contact and friction
model appropriate for the nanometer scale. It can be seen that
the obtained critical forces and times are the same in terms of
classical and nonclassical models and employing the beam
models is where the effects of nonclassical models emerge.
Nonclassical theories of continuum mechanics include material
length scale parameters in governing equations to capture the
size effects in nanometer and micrometer scales. The nonclas-
sical theory of modified couple stress employed in this paper
includes one material length scale parameter (l) that contributes
to the beam model established based on this nonclassical
theory. As observed in Equation 13 for the nonclassical
Euler–Bernoulli model, the term µAL2 has been added to EI
unlike the classical equation. It is obvious that by increasing the
material length scale parameter, the value of equivalent stiff-
ness as well as the discrepancy between classical and nonclas-
sical models increases. By using the described analysis used for

the Euler–Bernoulli beam model, similar results regarding the
decrease of deflections in the Timoshenko beam model are
attainable. The difference between Euler–Bernoulli and Timo-
shenko beam models are due to the additional degree of free-
dom of the Timoshenko beam model in both the classical and
nonclassical approach. However, the difference vanishes when
the sample under study is thin enough. The sensitivity of the
models to the material length scale parameter and beam dimen-
sional characteristics are widely discussed in the related article.

To address the behavior of the particle after retracting the tip, it
should be mentioned that it depends on the beam dimensions
and material characteristics along with the applied force. For
this reason, the potential energy of the beam and the adhesion
energy must be obtained, and if the potential energy of the
beam is more than the adhesion energy the beam tends to retain
its straight position [8].

Comparison of the results with other studies
Since the validity of the method is mainly dependent on force
simulations, the comparison of simulations of critical forces and
times with other studies are presented in Figure 18 and
Figure 19 by employing contact mechanics models that are in
compliance with other studies.
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Figure 19: Comparison of the critical force and time simulation using the Lundberg cylindrical contact model for DNA. A) Present study simulation
method. B) Korayem and Saraee simulation [16].

Figure 20: Comparison of the deflections of a polystyrene nanorod using classical and nonclassical models assuming l/d = 0.25.

Table 10: Employed information by Moradi et al. [8].

Critical force
(nN)

Critical time
(s)

Nanorod
diameter (nm)

Nanorod
length (nm)

18.8 0.18 85 1000

Moradi et al. [8] studied the manipulation dynamics of a cylin-
drical nanorod made from polystyrene using a classical theory
of continuum mechanics. In this section, by considering the
information employed by Moradi et al. (Table 10), the deflec-
tions of a polystyrene nanorod are presented by including the
size effects, followed by a comparison between the results.

Figure 20 and Table 11 show the deflections of the polystyrene
nanorod according to different models with the loading condi-
tions presented in the study of Moradi et al.; the results are ob-
tained by considering l/d = 0.25. As observed, nonclassical
models predict 25% lower maximum deformation compared
with the classical Euler–Bernoulli beam model as in the study
of Moradi et al.

By varying l/d, the deflections predicted in the nonclassical
model change. Figure 21 and Table 12 show the deflections of
the polystyrene nanorod based on the nonclassical Timoshenko
model with respect to l/d. By increasing the value of l/d, lower
deflections are obtained in nonclassical models. After obtaining
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Table 11: Comparison of the deflections of a polystyrene nanorod using classical and nonclassical models assuming l/d = 0.25.

Beam model Maximum deflection (nm) Difference from classical Timoshenko

classical Timoshenko 76.08 0
classical Euler–Bernoulli 74.60 1.95%
nonclassical Timoshenko 56.24 26.08%
nonclassical Euler–Bernoulli 54.76 28.02%

Figure 21: Comparison of polystyrene nanorod deflections in the nonclassical Timoshenko beam model with respect to l/d.

Table 12: Maximum deflection of a polystyrene nanorod in the nonclassical Timoshenko beam model.

Material length scale parameter l/d = 4/8 l/d = 3/8 l/d = 2/8 l/d = 1/8 l = 0

maximum deflection (nm) 31.93 42.58 56.24 69.89 76.08
difference from classical model 58.03% 44.06% 26.08% 8.11% –

the deflections, Moradi et al. carried out a 100 nm simulation on
the polystyrene nanorod motion. The comparison of the results
of the classical simulation with those of the nonclassical simula-
tion shows lower deflections before the onset of motion and
more required time for approaching target point (Figure 22 and
Table 13) in nonclassical models.

As the results show, the difference between the classical and
nonclassical models increases with increasing material length
scale parameter. At l/d = 0.5, a difference of more than 24% is
observed. In the study carried out by Moradi et al., the aspect
ratio of 11.76 was calculated as the critical failure aspect ratio
[33]. Figure 23 shows that the nonclassical theory predicts a

higher aspect ratio. As observed in Table 14, the difference be-
tween the classical and nonclassical models could be more than
75% at l/d = 0.5.

Conclusion
In this article, in order to fill the gap of previous studies which
mainly focused on molecular dynamics and classical continu-
um mechanics models, dynamic and mechanical modeling of
manipulation process were carried out using nonclassical con-
tinuum mechanics theories. Because the material length scale
parameter was used in the equations and the symmetric couple
stress tensor, MCST was selected for modeling purposes. First,
the required critical forces and times for the onset of motion in
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Figure 22: Simulation of the manipulation process of a polystyrene nanorod and comparison with the presented model by Moradi et al. [8].
A: l/d = 2/8. B: l/d = 3/8. C: l/d = 4/8.

Table 13: Final position of the polystyrene nanorod using a nonclassical Timoshenko beam model.

Material length scale parameter l/d = 4/8 l/d = 3/8 l/d = 2/8 l/d = 1/8 l = 0

final position (nm) 130.19 140.25 153.16 166.06 171.92
difference from classical model 24.27% 18.42% 10.91% 3.41% –
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Figure 23: Variation of the failure aspect ratio versus l/d for a polystyrene nanorod.

Table 14: Variation of the failure aspect ratio versus l/d for a polystyrene nanorod.

Material length scale parameter l/d = 4/8 l/d = 3/8 l/d = 2/8 l/d = 1/8 l = 0

failure aspect ratio 47.12 40.80 33.28 23.50 11.76
difference from classical model 75.08% 71.17% 64.66% 49.96% –

each motion mode were simulated and the sliding on the sub-
strate was found to be the dominant mode. In addition, deflec-
tions of the cylindrical gold nanoparticle in classical and
nonclassical models were studied. The maximum predicted
deflection by the nonclassical approach was 90% less than that
of the classical one. Also, with a decreasing aspect ratio, the
deflections decreased in both the classical and nonclassical
models. However, the increment rate of nonclassical models
was lower, and by increasing the aspect ratio, the difference be-
tween classical and nonclassical models became greater. More-
over, the sensitivity of the nonclassical model to the size depen-
dence was studied, demonstrating that with an increase in the
material length scale parameter, the deflections of nonclassical
models decreased, while the difference with respect to classical
models increased. To investigate the effect of nonclassical
modeling in the manipulation dynamics of cylindrical nanopar-
ticles, a gold nanoparticle with a length of 25 µm and aspect
ratio of 30 was manipulated on a substrate by 200 nm at a speed
of 50 nm/s.

The results showed that by increasing the aspect ratio, the
difference between the classical and nonclassical models
regarding the prediction of final position increased and reached

the considerable value of 25% for the aspect ratio of 35. In ad-
dition, by decreasing the manipulation distance, the difference
between the two models increased. In order to ensure the
studied samples will not fail, classical and equivalent nonclas-
sical stresses were calculated and the stress sensitivity to the
change in aspect ratio was investigated, showing a notable
difference between predictions using classical and nonclassical
models (more than 212%). In the end, the results obtained from
the dynamic simulation of a cylindrical polystyrene nanorod
with a length of 1 µm simulated by the classical model were
compared with those obtained from the nonclassical simulation.
The findings showed that the effect of size is indeed significant.
For instance, the difference between the classical and nonclas-
sical models was more than 58% at l/d = 0.5, and the classical
models cannot accurately predict this. In addition, from a
nonclassical study of stresses, it appeared that the aspect ratio of
11.76 obtained by another researcher in the classical model
does not provide a precise prediction of the failure aspect ratio,
i.e., the obtained aspect ratio was overdesigned. This aspect
ratio increased by 75% in nonclassical models and reached
47.12. The importance of this issue will be more relevant when
the increment of the aspect ratio leads to small range deflec-
tions.
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